Module 8: Risk Assessment

Module Objectives

- Define the purpose of Superfund risk assessment
- Define the four components of the human health risk assessment process
- List how radiological risks are included in the risk assessment process
- Explain how radiological risk assessment differs from chemical contaminant risk assessment

Risk Assessment in Superfund

- Consistent framework for developing risk information necessary to assist decision-making
- Purpose of risk assessment
 - Determine whether remedial action is necessary
 - Help provide justification for performing remedial action
 - Assist in determining what exposure pathways need to be addressed by remedial action
 - Addresses both human and ecological risks (separately)
- DOE sites likely to have a lot of data and risk assessment tools available
- Involve risk assessors early in project

Risk Assessment in Superfund

The Baseline Risk Assessment: Identifying Contaminants

The Baseline Risk Assessment: Identifying Contaminants

LAB REPORT

Wdj sdljfufjeieinknd ijjf jdkkfeifkdfklsdjflknalsl o dljkf noufllkx ododow sdklfjoie ljflojdj ;k;ls;'s[;lsdfjeokk,f;pdpdpa',f'f ;ldfeow',ffks;pldk,f'pdo f ;dokfemme;fksdofke,l

CHEMICALS OF CONCERN

CCI ₄ As, Pb, Cr

TCE, TCA, DCE

PCB

ORGANICS

INORGANICS

- □ Most Toxic
- □ Most Mobile
- ☐ MostPersistent

Risk Assessment

The Baseline Risk Assessment: Assessing Exposure

The Baseline Risk Assessment: Assessing Exposure

■ How Much?

Estimate Expected Exposure Levels

- Reasonable maximum exposure (RME) scenario
- Use standard exposure assumptions
- Collect information on frequency and magnitude of exposure

The Baseline Risk Assessment: Assessing Toxicity

Toxicity Assessment

- Toxicity values generally are based on previously developed EPA data
- Types of adverse health or environmental effects associated with individual/multiple exposures
- Relationship between magnitude of exposures and adverse effects
- Related uncertainties

The Baseline Risk Assessment: Characterizing Risk

Risk Characterization

- Should summarize:
 - Contaminants of concern
 - Exposure evaluation
 - Weight of evidence (especially for toxicity information)
 - Risks associated with each potential route of exposure and contaminant of concern at the site
- Should discuss any major uncertainties in assumptions or expectations

Risk Communication

- Explaining magnitudes drop in swimming pool = mg/l
- Comparing risks
- Explaining risk versus hazard
- Describing risk perception

Superfund Radiological Risk Assessment Approach and Issues

Basic Superfund Concepts

- Radiological risk assessment is conducted separate from (in addition to) chemical risk assessment
- Usually, results are not combined, but are considered jointly when using risk assessment results
- There may be differences in risk analyses because of the way radiological substances affect the body
- Assessing radioactive risks requires the expertise of an experienced health physicist

Identification of Exposure Scenarios

- Exposure scenarios describe the components for potential human exposure pathways
- Radiation exposure may be internal or external
- "Effective dose equivalent" and "committed dose equivalent" are used in describing exposure scenarios
- Superfund requires identification of both current and future reasonable maximum exposure scenarios for each site
- Therefore, Superfund assessment must identify potential for occupational exposure (short-term risk) and general population exposure (long-17 term risk)

Selection of Contaminants of Potential Concern

- Usually, a very limited number of radionuclides at a site contribute significantly to the human health risk
- The DOE manager should consult with an experienced health physicist to develop a conceptual model of the facility, and to identify the anticipated critical radionuclides and pathways

Exposure Assessment

- Virtually identical for radioactively contaminated sites and for chemically contaminated sites
- Sites with radionuclide contamination should conduct a survey to determine external radiation levels
- □ For chemical exposure, units are mg/kg-day. Radionuclide exposure is typically expressed in units of activity (i.e., Curie) rather than mass
- □ Like chemicals, a radionuclide's transfer rate into the environment must be examined
- Biological and chemical transformation can never alter the radioactivity of a radionuclide, whereas chemical contamination may be dramatically 19 affected by these processes

Toxicity Assessment

- Toxicity assessments for radionuclide exposure are better understood than toxicity assessments for chemical exposure
- Dose-response assessments for radionuclides are better characterized
- For both radionuclides and chemicals, cancer toxicity values are obtained by extrapolation from experimental and epidemiological data
 - For radionuclides, however, human epidemiological data form the basis for the extrapolation
 - For chemical carcinogens, laboratory experiments are generally the basis for the extrapolation

Toxicity Assessment (cont'd)

Radiological human data leads to greater confidence in extrapolating risk of low doses of radiation than in extrapolating from laboratory animal experiments for chemicals

Risk Characterization

- □ Risk characterization for radionuclides is better understood than risk characterization for chemicals
- □ The DOE manager integrates (but does not necessarily combine) radiological and chemical risk information to reach a management decision
- In some cases, radiological and chemical risk assessments may be summed to determine the overall potential human health hazard associated with a site. Much caution is needed before summing these risks, however

Uncertainty

- Uncertainty is associated with all steps of the risk assessment process
- The DOE manager must evaluate and discuss the uncertainties of each step of the risk assessment
- Some steps of radiological risk assessments have significantly less uncertainty associated with them than those steps of chemical risk assessments
- The appropriate way to characterize an uncertainty will depend on the needs of the analysis and other factors

Module Summary

- **■** The purpose of the Risk Assessment is to:
 - determine whether remedial action is necessary
 - help provide justification for performing remedial action
 - assist in determining what exposure pathways need to be addressed by remedial actions
 - address both human and ecological risks
- □ Components of human health risk assessment in superfund includes identifying contaminants of concern, assessing exposure and toxicity, and conducting risk characterization
- □ Radiological and chemical risk assessments are conducted as separate assessments. However, the results of these assessments are not combined, but are considered jointly for a more thorough assessment⁴